{"id":2852,"date":"2017-10-17T16:56:57","date_gmt":"2017-10-17T14:56:57","guid":{"rendered":"http:\/\/www.revistaitransporte.com\/?p=2852"},"modified":"2017-10-26T10:31:29","modified_gmt":"2017-10-26T08:31:29","slug":"under-the-eye-of-ra","status":"publish","type":"post","link":"https:\/\/www.revistaitransporte.com\/under-the-eye-of-ra\/","title":{"rendered":"Under the Eye of Ra"},"content":{"rendered":"

According to Ancient Egyptian mythology, the god Ra sailed his ship along the celestial Nile, which corresponded to the great royal river that gave rise to one of the earliest civilizations in the world. The great temple of Luxor, dedicated to Ra \u2013as well as to another deity, Amon\u2013 together with the nearby enclave of Karnak, near Thebes, the ancient capital of the pharaohs, together with the great pyramids and the Sphinx of Gizeh in Cairo, constitute some of the most important archaeological legacies that reflect its greatness.<\/p>\n

Today tourism, and the activities related to it, have become one of Egypt\u2019s most important economic engines, contributing a total of 12.8% to the national GDP and 11.6% of total jobs of the active population. Tourism policy, which originally focused on enhancing archaeological tourism around the Nile, has been diversifying in recent decades to make sun and beach tourism, mainly around Hurghada and Sharm El Sheikh on the Red Sea and Matrouh on the Mediterranean coast, one of the country\u2019s biggest attractions.<\/p>\n

In spite of Egypt\u2019s enormous tourism potential, with the number of international visitors doubling between 2004 and 2010, with a record high of 14.7 million foreign tourists, the events related to the Arab Spring in 2011 paralysed this growth trend and caused it to fall to its current figure of 10 million. In 2010, archaeological tourism attracted 3.2 million visitors in the vicinity of Luxor and Aswan, with 30% corresponding to national tourists and 70% to international tourists. According to the internal mobility patterns analysed along the corridor, these visitors generated almost 5 million trips in the study area. Approximately 65% of the tourists reached the area through the airports in Cairo, Luxor and Aswan, while the remaining 35% came from the Hurghada region on private buses operated by tourist agencies. However, these 2010 statistics could increase significantly if the country regains political and social stability.<\/p>\n

One of the main design criteria that conditioned the alignment was to minimize crossings over the Nile<\/p><\/blockquote>\n

Aware of their potential and the importance of tourism for the economic recovery and development of Egypt, the government wants to boost the production sector and is promoting a new model in which high speed enhances the synergies between cultural and leisure tourism, catalysing long-distance internal mobility within the country. The Ministry of Transport is studying two large corridors connecting the capital city of Cairo with Alexandria to the north, and to the south along the Luxor-Aswan axis and the Red Sea coast to the east. The implementation of high speed will transform Egyptian rail transport, offering connections with total travel times between key points similar to those of air travel, but with more regular service and expanded timetables, providing approximately 18 hours of daily service, plus punctuality and comfort at more competitive prices.<\/p>\n

Egypt receives technical and financial support from the European Union to carry out its railway modernization plans. It is in this context that the collaboration agreement signed by the Egyptian minister of Transport and the Spanish minister of Economy and Competitiveness in April 2015, and the feasibility study carried out by Ineco with Adif and Renfe for the north-south corridor, financed from the Fund for the Internationalization of Enterprise (FIEM), are framed. The objective of the study, on which a multidisciplinary team with professionals of different specialities worked for 14 months, was to provide the Egyptian government with a useful tool for decision making in the process of implementing high speed in the country.<\/p>\n

The study area<\/h4>\n

The feasibility study covers the corridor between Cairo and Luxor, and the areas from Luxor to Aswan and Hurghada. The proposed high-speed line comprises 650 km between Cairo and Luxor, an additional 175 km to Aswan, and 262 km between Luxor and Hurghada, totalling 1,087 kilometres of line and 6 stations: Cairo, 6th of October, Minya, Asyut, Luxor, Aswan and Hurghada. According to data from 2015, the population of the study area totalled 13.1 million inhabitants (14.9% of the country\u2019s population) and mobility between the different defined areas is estimated at 38.5 million trips a year. In terms of the modal distribution, 29% of the trips are made in private shared vehicles, 28% in private vehicles, 23% by railway, 17% by bus and the remaining 3% by plane. This demand for transport translates into a market of some 4.1 billion Egyptian pounds annually. In terms of door-to-door travel times, specifically for the Cairo-Luxor connection, the minimum time for the road alternative is more than 7 hours, rail more than 10.5 hours, and plane 3.5 hours. The quantification and characterization of the mobility in the study area was based on the analysis of the available information and the results obtained from a campaign of surveys and traffic counts.<\/p>\n

Tourism, the X factor<\/h4>\n

The success of the high-speed line will depend to a large extent on the recovery and enhancement of international tourism, which according to the demand forecast model would account for between 60% and 80% of the total number of passengers, depending on the scenario. The model takes into account three possible demand scenarios, high, medium and low, in two traveller segments: local and international. In order to prepare them, we took into account the forecasts of the Egyptian government in terms of GDP growth and also analysed different hypotheses regarding the recovery and development of international tourism.<\/p>\n

The objective of the study was to provide the Egyptian Government with a useful tool for decision making in the implementation of high-speed rail<\/p><\/blockquote>\n

In the most optimistic scenario, the Ministry of Tourism expects to reach 20 million foreign tourists in 2020, which means an annual growth rate between 2014 and 2026 of 9%, much higher than GDP growth for that same period. In this context, passenger demand for the high-speed line would be 6.3 million per year. In the average scenario, visitor levels are expected to return to 2010 levels in 2026, with annual growth of 3.4%, very similar to GDP growth, and 3.3 million passengers on the new line. The least optimistic estimate places tourist recovery a decade later, in 2036, with annual growth of 1.8%, and 2.7 million high-speed travellers.<\/p>\n

Technical feasibility<\/h4>\n

The technical feasibility analysis is based on the definition of the alignment of the future railway infrastructure and a comprehensive design at a scale of 1:25,000. For this purpose, different alternatives were studied at a scale of 1:50,000, and the most favourable one was selected applying a multi-criteria analysis: the optimal combination between factors such as construction costs, technical complexity (evaluated based on the length of structures and tunnels and the type of terrain), environmental conditions \u2013giving particular importance to the preservation of the archaeological heritage\u2013, the length of the route and the travel times obtained from the simulations.<\/p>\n

The main design criteria that conditioned the alignment were based on minimizing crossings on the Nile River, avoiding mountainous areas and lands with high geotechnical risk \u2013with high clay, saline or gypsum content\u2013 as well as areas with archaeological and environmental protection or impacts on farmland. The two intermediate stations
\n\u2013Minya and Asyut\u2013 were selected for being the most populated of the route, as well as for their future growth potential according to the plans of the Egyptian government. With regard to the design speeds, on the corridor between Cairo, Luxor and Aswan, under very favourable topographic conditions, the maximum design speed is 350 km\/h, while a maximum design speed of 250 km\/h was chosen for the stretch between Luxor and Hurghada.<\/p>\n