Málaga – ITRANSPORTE https://www.revistaitransporte.com TRANSPORT ENGINEERING & CONSULTANCY Mon, 24 Oct 2016 14:49:35 +0000 en-GB hourly 1 https://wordpress.org/?v=5.9.4 Work on the Madrid, Barcelona & Málaga metros https://www.revistaitransporte.com/work-on-the-madrid-barcelona-malaga-metros/ https://www.revistaitransporte.com/work-on-the-madrid-barcelona-malaga-metros/#respond Fri, 14 Oct 2016 10:30:53 +0000 http://www.revistaitransporte.com/?p=2111

The company continues with several civil works projects, technical assistance work and design and feasibility studies for the Madrid, Barcelona and Malaga metros. Track inspection and monitoring work is being carried out on the Malaga metro; different unique and regulatory projects are underway on the Barcelona metro in addition to monitoring work. Aside from the Framework Agreement projects, Ineco has been hired to provide technical assistance during the inspection of track cars in the Madrid metro.

With regard to Light Rail West –which connects the towns of Pozuelo de Alarcón and Boadilla del Monte to Madrid–, work includes speed validation studies. In 2004, Ineco carried out the construction of Light Rail West infrastructure and facilities.

]]>
https://www.revistaitransporte.com/work-on-the-madrid-barcelona-malaga-metros/feed/ 0
All under control https://www.revistaitransporte.com/all-under-control/ https://www.revistaitransporte.com/all-under-control/#respond Tue, 02 Feb 2016 18:54:19 +0000 http://www.revistaitransporte.com/todo-bajo-control/?lang=en

Bruce Fairbanks

His work is characterised by the search for architectural expressiveness through the meticulous integration of functional elements and construction systems from the start of the design process. In Spain, he has designed the control towers for the airports of Madrid, Málaga, Barcelona and Santiago de Compostela, amongst others. He has also designed five control towers in Algeria, and the control tower for Bogotá airport.

“To create a unique symbol for each place”

Bruce Fairbanks, founder of Fairbanks Arquitectos, has accumulated extensive experience in the design of airport buildings since 1996 when he won the tender for the construction of the Madrid-Barajas control tower.

Presently in the world of airports there is a trend to promote the control tower as a symbol, an image that represents the airport and a reference point for the arrival in, and departure from the city where it is located. This trend has created increased interest in architectural execution in the design of control towers in addition to their functional requirements. It is precisely the individuality of these requirements that significantly affects the type of building, such that throughout history there are various examples of “types” of tower designs, which, once designed, were repeated in various airports: one notable case is the leoh Ming Pei control tower. It was designed between 1962 and 1965 with the objective implementation in 70 airports, although in the end 16 were built. The concept of locating in upper levels strictly that which was necessary was developed, putting the maximum amount of functions in the base building, which was adapted to the specific characteristics of each location. As such, the tower could be prefabricated and repeated with standardised equipment, giving the airport network an image of safety since a controller could work in any location without having to adapt. The tower was designed with 5 standardised heights (18-46 m) in accordance with visibility requirements in each location. The control tower’s cab is pentagonal so there are no parallel façades and so as to avoid reflections. In Spain, in the 1970s, Juan Montero Romero, an aeronautical engineer, built a tower, which was repeated in several cities: Málaga, Alicante, Valencia, etc.

To create a landmark, the architect must find within the functionality the characteristics that distinguish one tower from others

Converting control towers into airport landmarks and reference points for cities is a challenge in the work of an architect: creating a symbol, always unique for each location, which meets all of the requirements for the optimal functioning of the tower. The location, the height of the control room, its form and the layout of its structural elements are some of the first elements to define. Control towers typically have a base building and a shaft that supports the upper floors, which are designed to adapt to the control operations. Given the form, with an upper part and a lower part and the height of the type of building, in my opinion it is essential to incorporate the construction process into the design of the tower, and this is what I have done in those which I have designed. This design comes from an analysis of the functional aspects, the programme and the location. To create a landmark, the architect must find within the functionality the characteristics that can distinguish one tower from others and strengthen them to create a unique tower with its own character in each case.

Analysis of four cases

The following examples of control towers show diferente conceptual approaches to design this building type and the elements that diversify its design.

1962. Dulles airport, Washington DC
Eero Saarinen

The Dulles tower has all of the equipment rooms at a height, elegantly assembled by Saarinen with two juxtaposed bodies. The form of the tower is integrated with that of the terminal building, also designed by the same architect.

1992. JFK airport, Nueva York
Pei Cobb Freed & Partners

The upper part of the JFK tower, 97.5 metres in height, contains only the aerodrome control cab and half way up the shaft there is the platform control room, which takes the same form as the upper levels.

1997. Adolfo Suárez Madrid-Barajas airport
Bruce Fairbanks

The Adolfo Suárez Madrid-Barajas control tower had the specific feature of a 400 m2 equipment room located at a height. To resolve the transition between the shaft of the tower and the projection, an inverted half sphere was adopted, with a floor for air conditioning equipment being inserted in the support. The octagonal shape defined for the
cab is extended throughout the top of the building, the structural design of a central column and 8 perimeter columns is repeated on all levels.

Another particular feature of the tower is the construction system designed as an integral part of the design. The shaft is built with prefabricated segments assembled in spirals, which, on the inside, contain the service ducts and circumscribe the emergency stairway. The upper floors were built with a metallic structure on the floor and subsequently hoisted onto the shaft. The system allowed the tower to be built in nine months, without using scaffolding.

2004. Barcelona-El Prat airport
Bruce Fairbanks

The functional requirements were similar to those of Barajas, with the exception that a large part of the equipment is located in the base building. The resistant structure is defined independently from the functional elements of the shaft, which was developed as a representative design element. An eight-pointed hyperbola generated from the octagonal shape of the cab holds the upper floors.

The hyperbola links the tower with Catalan Modernism and Antoni Gaudí, who used this form in many of his designs, including on the domes of the Sagrada Familia. The construction system is a representative part of his design. The assembly of the hyperbola, built with prefabricated concrete girders, was guided by a central aluminium structure designed to contain the elements of the shaft. The upper floors were built on land and hoisted into position, supported by the eight points of the hyperbola, consolidating the whole structure when it was under load.

Roberto Serrano

Since 2000, he has been working for Ineco in the airport building area, from which he has participated in enlargements of almost all airports in Spain (Madrid, Barcelona, Palma de Mallorca, Menorca, Valencia, Girona, Jerez, Ibiza, Santander, Málaga, Gran Canaria, etc.) and has carried out different types of projects in the airports of Odessa (Ukraine), Montego Bay (Jamaica), Cartagena de Indias (Colombia), Tikrit (Iraq), Kastelli (Greece) and Chiclayo (Peru).

“In the future, it will not be necessary to view operations”

Roberto Serrano has participated in more than 50 aeronautical projects, amongst them, the NET and SAT control towers of Madrid-Barajas airport and the new control tower of Eldorado airport (Bogotá).

Although the first control towers date back to the 1920s (in 1921, Croydon airport in London was the first in the world to introduce air traffic control), it was from the 1930s that they became commonplace, due to the fact that growing aircraft traffic made controlling and managing it necessary. At that time, in which technology was nothing like the current systems, the need to visually supervise aeronautical operations around the airport was met by placing the control room (cab) in an elevated and predominant position of the airport (control tower).

To date, the first steps in designing a control tower involve establishing its site and the height of the cab. Internationally, to meet the viewing requirements from the cab, the recommendations of the Federal Aviation Administration (FAA) are applied. The optimum height and location of a control tower is the result of weighing up many considerations. The view from the cab requires the air traffic controller to be able to distinguish the aircraft and vehicles that circulate in the manoeuvring area, as well as aircraft that fly over the airport, particularly in take-off and landing paths. The objective is to have the maximum visibility possible and avoid the sun, external light sources and reflections from adjacent buildings affecting the visibility of the controller.

Nowadays, technology allows a practically blind landing

With regard to the location, we must consider the potential effects of local weather: flood areas or areas susceptible to fog. Its compatibility with the potential future development of the airport must also be studied, thereby avoiding the need to relocate the tower before the end of its life cycle. Insofar as possible, the tower and its buildings should be located on the landside of the airport, thus avoiding access through the airfield and facilitating the entry of staff. Furthermore, the location should be such that it does not affect the quality of the signals of the airport’s radio navigation aids (ILS, VOR, DME, etc.), or communication systems. The minimum height required for the control tower can be obtained with the aid of the FAA visibility analysis tool, ATCTVAT (Airport Traffic Control Tower Visibility Analysis Tool), in accordance with the physical conditions of the airport.

Once the position and height has been determined, the infrastructure is designed, and generally includes a cab and an antenna field, which, located on the roof of the cab, normally has communications antennas, radio relays, and other electronic and lightening protection elements. Furthermore, there are areas for staff, equipment, power, air conditioning, etc.

In an era in which technology provides information to pilots to allow a practically blind landing, is it necessary to keep air traffic controllers in a high position so they can see these operations? In the future, air traffic control rooms will probably be in buildings that are more similar to those of offices or air traffic control centres than the current towers.

The future has already become reality

2015. Control tower of Örnsköldsvik airport, Sweden

Recently, Örnsköldsvik airport in Sweden replaced its control tower with high-tech cameras. Signals are sent to controllers stationed in Sunvsal airport, located around 150 kilometres away, from a 25-metre mast with 14 high-definition cameras. The high performance of these cameras eliminates blind spots, provides information in rain, fog or snow and, along with a whole series of weather sensors, microphones and other devices, it allows controllers to feel as if they were beside the runway. The Swedish Transport Agency approved remotely operated towers on 31 October 2014. Six months later, the first airplane landed in Örnsköldsvik airport using the remote tower services.

]]>
https://www.revistaitransporte.com/all-under-control/feed/ 0
With open arms https://www.revistaitransporte.com/with-open-arms/ https://www.revistaitransporte.com/with-open-arms/#respond Tue, 02 Feb 2016 18:44:17 +0000 http://www.revistaitransporte.com/en/con-los-brazos-abiertos/

Spain is the third most popular tourist destination in the world in terms of revenue and for another year it has beaten its own record by exceeding 68 million visitors in 2015, three million more than the previous year. According to all of the analyses carried out, a factor that has benefited the sector is the situation of political instability from 2011 in Mediterranean destinations such as Tunisia, Egypt and Turkey. They all compete with Spain, which mainly receives European tourists: seven out of ten are British, French, German or Italian although, in relative terms, the increase in arrivals from the US and Asian countries is notable. According to Turespaña data, almost 80% of the total number came by air (half on a low-cost airline); a determining factor in this figure is that the Balearic and Canary Islands, for example, which are amongst the most touristic destinations in the world, are islands. As such, in 2015 all of the 46 airports in Spain registered more than 207 million passengers, 5.9% more than the previous year.

During 2015, eight out of ten visitors came to one of the 46 Spanish airports

Besides the two major Spanish airports, Adolfo Suarez Madrid-Barajas and Barcelona-El Prat, which between them accounted for 41.7% with 86.5 million, more than 101.7 million passengers –49.1% of the total– were counted in the 14 airports classified as “touristic”, coinciding with the most touristic destinations: the Balearic Islands, Palma de Mallorca, Ibiza and Menorca; the Valencian community, with Valencia and Alicante airports; Andalusia, with Málaga and Seville; the Canary Islands, with the airports of Gran Canaria, Tenerife South, Lanzarote, Fuerteventura and La Palma; and Catalonia, with Girona and Reus airports.

They all underwent processes of improvement and enlargement in the 2000s in order to increase their capacity, closely linked to the growth in tourism, known as the Barajas Plan, Barcelona Plan, Levant Plan, Málaga Plan, Canary Islands Plan, etc. During this time, Ineco has provided its services to the Ministry of Development and Aena in the planning and execution of the activities. Since 2008 it has also been in charge of the Traffic Forecast Office, which plays a key role in airport planning. A few times a year, a team of engineers and technicians updates the forecasts, and this is carried out with a macroeconometric model called PISTA (Integrated Prognosis of Air Traffic Systems), also developed by Ineco, with a specific methodology based on the concept of a ‘network’ and independent models for the national and international segments, based on significant economic variables. Furthermore, in preparing the specific forecasts for each airport and for the short-medium-term, other factors are taken into account such as competition from other means of transport (mainly AVE), the existence of other airports in the area of influence, changes in offers from airlines (new destinations, greater frequency, new models of airplanes used, etc.), special events (sports competitions, summits, etc.) and others.

Since 2008, Ineco has also been in charge of the Traffic Forecast Office, which plays a key role in airport planning

Not only are volumes of passengers, operations and goods for each airport in the network forecast, but the design values (DHP, design hour passengers; and DHA, design hour aircraft) that are essential for adequate planning of the infrastructure are also considered, since they allow detection of the needs that airports will have and, furthermore, when it will be necessary to carry out the activities. The results of the traffic forecasts are used to prepare Aena’s business and investment plans, as well as to design commercial strategies in airports and, as such, they are very important.

Other means

Although air is by far the most popular means of transport (it is chosen by almost 80%) amongst international tourists, more than 18% use road and 1.4% sea. Cruises are growing in popularity year on year worldwide and also in Spain, where in 2015 Spanish ports, with those of Barcelona, the Balearic Islands and the Canary Islands at the head, have received around 8 million visitors, according to data from the Ministry of Public Works.

More tourists, more airport revenue

The positive evolution of the aviation market has a significant impact on the national economy, since, according to Spanish government data, air transport supports 7% of the Gross Domestic Product, it generates 140,000 direct employees and 440,000 if indirect employees are included. On one hand, because part of aeronautical revenue comes from the rates that the operator (Aena, in the case of Spain) charges airlines per passenger and, on the other, through the commercial revenue, i.e., shops, restaurants, car parks and other non-aeronautical spaces and services that are licensed to third parties (see it54). This item accounts for more than a quarter (25.7% in 2014) of Aena’s total revenue, which in 2014 increased to 3.165 billion euros, 8% up on the previous year.
]]>
https://www.revistaitransporte.com/with-open-arms/feed/ 0
Transparency and simplicity https://www.revistaitransporte.com/transparency-and-simplicity/ https://www.revistaitransporte.com/transparency-and-simplicity/#respond Tue, 02 Feb 2016 16:38:45 +0000 http://www.revistaitransporte.com/en/transparencia-y-sencillez/

Since last August, more than 20,000 residents of this new construction zone have been able to reach the centre of Madrid in 25 minutes thanks to the new halt, without having to go to the centre of Torrejón de Ardoz. Located in this Madrid municipality of 127,000 inhabitants in the north-east of Madrid, the new station belongs to the C7 commuter line and serves the districts of Soto del Henares, Mancha Amarilla and Zarzuela, a zone near the Hospital of Torrejón and the new Casablanca industrial estate. Ineco has carried out the architectural, structural and installation design, as well as construction management for Adif. It is a modular structure of porticos that eliminates the need for interior pillars (open plan) and can be easily adapted to any type of station. The main building, direction Alcalá de Henares, has a rectangular floor, a foyer with waiting areas, automatic ticket vending machines and six faregates, with the possibility of increasing this number to nine. It also has a space for offices, toilets and utility rooms.

Ineco has carried out the architectural, structural and installation design, as well as construction management for Adif

A modular and extendible design

The halt has two buildings, one for each direction. In the interior, all uses are distributed by independent building volumes (‘building within a building’). The station was designed with a capacity to receive 6,000 passengers a day, although the modular structure facilitates its future expansion.

Golden ratio

The geometry of the buildings is based on the golden ratio of a two-metre square, which forms rectangles of 2.8282 x 2m. When doubled they create a module of 5.6564 x 2m, and from the division of this module come all of the internal distances between porticos and different spaces are created.

A light box

The main building is laid out as a rectangular prism with two façades, which provides a maintenance area between them. While the “skin” tinges the interior-exterior light (‘light box’ effect), the outer layer generates permeability and allows the design to be changed.

Platforms

The platform edges are 1.75 metres from the track centres, with a width of 5 metres and a length of 210 metres, with 6 metre slopes at each end. Thanks to the 80 metres of canopy extending from the buildings, passengers are always sheltered when they access the platforms.

Other stations designed by Ineco

Ineco has extensive experience in drawing up architectural designs, as well as in construction management and technical assistance and the preparation of feasibility studies in different types of stations, both overground and underground.

  • In Cercanías (commuter rail) we should highlight, amongst others, projects such as the Miribilla station in Bilbao, built at a depth of 50 metres; the two in the Málaga airport access and a few others in the Valencian town of Alboraya, all of which are also underground, or the modern Cercanías halt of the Manuel-Énova bypass of the high-speed line to Levante.
  • With regard to modular stations, in 2009 it developed an innovation project taking a small halt in the north of Madrid, Las Zorreras, as a reference. A similar solution was also planned, the predecessor of that of Soto del Henares, for the Las Margaritas-Universidad station, in Getafe, in the southern zone of Madrid. Abroad, in 2011, eight modern modular stations were designed for the Bogotá Western Corridor in Colombia.
  • With regard to the renovation of historical stations, we can highlight the design and construction management of the historic façade of Atocha (2012), that of the full renovation of Aranjuez station (2008) currently underway, or the modernisation works in around twenty Catalan stations (2009).
  • As well as architecture projects, we can also highlight other services, such as technical assistance for the work of the new La Sagrera-Meridiana commuter station in Barcelona (2010) or the prior feasibility studies for the Belgrade light rail in Serbia, with 25 stations, 10 of them underground; or for the São Paulo commuter network in Brazil, which included the construction of nine stations and the renovation of 65 others.
  • With regard to highspeed stations, Ineco has carried out around twenty projects, both in construction management and in drawing up architectural designs: this is the case for the stations of Puente Genil, Camp and Antequera-Santa Ana (2007), that of Vigo-Guixar or the projects in nine other stations of the Galician Atlantic corridor in 2010 (see article). Ineco has also worked in the construction management to adapt stations in the whole network for high speed: Santa Justa in Seville, Sants in Barcelona, Atocha in Madrid, Toledo, Zaragoza, A Coruña, Santiago and Ourense in Galicia, etc., as well as in that of enlargement of the Atocha railway complex and its new AVE terminal, begun in 2010.
]]>
https://www.revistaitransporte.com/transparency-and-simplicity/feed/ 0
Competitive edge https://www.revistaitransporte.com/competitive-edge/ https://www.revistaitransporte.com/competitive-edge/#respond Tue, 02 Feb 2016 14:48:45 +0000 http://www.revistaitransporte.com/en/ventaja-competitiva/

The Arid Lap project is financed by the Centre for the Development of Industrial Technology (CDTI), a Spanish public institution, through the Feder-Innterconecta Andalucía 2013 Programme. As suggested by the title –“Minimizing the effects of extreme climates on high-performance rail infrastructures in arid zones”– the aim is to develop technological solutions to minimize the negative impact of the meteorological conditions particular to arid zones on the operation of high-performance rail lines. The project focuses on the impact of sand (both airborne and suspended), and of high-temperature gradients and their consequences for rails and overhead line.

In 2013 and 2014, the universities of Granada, Seville and Madrid, the region of Andalusia, in the south of Spain, and the Málaga Rail Technology Centre all served as testing ground for trials with drones, temperature sensors, sand traps, weather stations, measuring systems, sand containment barriers and a large range of innovation projects.

Analysis of the impact of the environment on rail infrastructures in countries with arid climates showed that wind and suspended sand, as well as extreme temperature gradients, may prevent the line from functioning correctly, on account of abrasion, erosion or the accumulation of sand on the tracks, the wearing down of materials, etc. With a view to tackling these issues, the committee has focused on developing technology to predict and pre-empt the influence of weather conditions on the infrastructure and rolling stock, so that there is sufficient time in advance to take countermeasures.

Ineco participated in this project in consortium with the companies Adif, Elecnor, Deimos, Abengoa, Nervados, OHL and Win Inertia, working collaboratively together

The project’s results will take the form of technical scientific knowledge, which will pave the way for new engineering services and methods on the market for predicting adverse weather conditions and quantifying them when constructing infrastructures in arid environments. Adapting these services to arid conditions will allow for new systems and design recommendations. In short, this will make it possible to optimize the design, construction and maintenance of elements such as rails, railway platforms, catenaries, ballasts, telecommunication systems and security systems.

Teamwork

Ineco participated in this project in consortium with the companies Adif, Elecnor Deimos, Abengoa, Nervados, OHL and Win Intertia, working collaboratively together whilst simultaneously focusing their own research on a specific area. It also collaborated with the project University of Granada, the CSIC´s Experimental Station of arid zones, the University of Seville’s Research Foundation, the Complutense University of Madrid, the Andalusian Association for Research and Industrial Cooperation and the Andalusian Foundation for Aerospace Development.

Ineco, Elecnor Deimos and Adif, together with Fada-Catec, have worked on three campaigns flying drones to determine their usefulness in detecting sand, rocks and obstacles on the track, anomalies in catenary cable compensation, cracks, water yields and landslides. Studies have also been conducted on: whether UAV (Unmanned aerial vehicle, or drone) flights are compatible with high-speed environments, inspecting limited-access viaducts, and generating orthophoto maps and high-resolution digital models of the terrain.

In terms of the impact of the environment on the infrastructure, Ineco and OHL have analysed the geomorphological risks and ecological processes in desert areas. Ineco and Adif have analysed the lines in operation, their problems and the solutions that have been adopted. Ineco and Abengoa have carried out a study on the requirements and responses to take into account for the track devices in the face of adverse weather conditions in desert areas.

Seven companies, 14 R&D projects

1. Ineco: Forecasting models, drones and web platform

Ineco, together with the University of Granada, has developed a mesoscale meteorological model for forecasting wind and aeolian sand transport. It is essentially an application that, at least 48 hours in advance, is able to communicate the wind’s direction and intensity at specific relevant locations, as well as the levels of airborne sand associated with the wind levels at these locations. To this end, the company has installed a weather station and sand traps, to be used to calibrate the model, at the Doñana Biological Reserve dune field in Huelva.

Ineco also developed the web platform MARTE, bringing together all results from the various activities that form Arid Lap. In this way, MARTE manages monitoring information, alarms and predictions. The tool manages and processes data registered by the sensors on the Córdoba-Málaga high-speed rail line, specifically at Málaga station (sensors to detect sand build-up, rail temperature, rail stress, overhead line temperature and stress), as well as at the Doñana weather station. Furthermore, alerts are sent when the sensor thresholds are exceeded. There is a unit for spatial visualization and integrating the satellite, drone and aerosol (suspended particulate matter) images generated during the project.

2. Abengoa: Sensor and alert systems. Protections in sensitive elements of the infrastructure

As leader of the consortium, Abengoa actively participated throughout the project, focusing on studying the electrical insulator distances in environments with high levels of sand/dust in the air, and on developing sensor system methods to monitor and supervise the state of rails and overhead line in real time. Their aim is to send alerts when the values exceed those which limit operability and safety.

The technological development team for the department of Railway Engineering at the Rail Technology Centre (CTF) in Málaga has also conducted research on systems which prevent sand from accumulating on the junctions. These can be elevated structures which replace the ballast, or wind acceleration structures. They are designed to protect the hinged sections, and the greasy sections of elements that require lubrication in the overhead contact line, from the negative effects of a build-up of sand, extreme changes in temperature and water condensation. Lastly, they also designed new mechanisms for protecting elements of the compensation system for pulleys and counterweights against arid environments.

3. Win Inertia: Electronic as a solution. Sand sensors and communications

This Andalusian company has developed a sand build-up sensor, which measures both the weight and height of the accumulated sand. They have also simultaneously developed a concentrator system, which collects information in situ from the sensors (both the Abengoa ones and the Win Inertia ones), and then sends it to MARTE to be managed.

4. Elecnor Deimos: Aerospace technology for railways

They have focused their involvement on applying new aerospace technologies. They primarily developed on three lines, using satellite images to identify and quantify adverse conditions in arid zones for the first line, as well as identifying the changes that might arise, as concentrated aerosol images. These allowed them to evaluate their use in studying the risks associated with dust in the infrastructure in advance, or high-resolution Deimos-2 images in order to estimate the technical viability of using algorithms to detect changes to pinpoint the spread of sand and dust.

They also used images from drones to achieve sub-centimetre resolution, which makes it possible to semi-automatically detect, from the difference in height, the rock fall on the track. Lastly, Elecnor Deimos has developed an infrastructure for processing, storing, distributing and visualizing images from satellites, UAVs and related products based in cloud technologies, integrated with the control application MARTE, which was developed during the project.

5. OHL: Ecological Recovery and containment systems

OHL and Nevados jointly developed a containment system which produces a “trampoline” effect, concentring and projecting the natural flow of air with suspended sand around the sides of the rail infrastructure. Using 2D simulations and trials in wind tunnels, they have come up with a design which prevents the sand from moving forwards (with wind speeds below 15 m/s), or throws away and above the track, owing to its aerodynamic design (speeds greater than 15 m/s). At the same time, OHL have carried out a critical analysis on applying ecological recovery to the railway environment in arid areas.

6. Nervados: Concrete know how. Prefabricated and personalized

Nervados has taken on the challenge of optimizing the design part and modelling of the prefabricated concrete barrier that impairs performance, as well as the manufacturing, transportation and concrete spreading processes. They have researched the need for concrete which is resistant to erosion and extreme temperatures, both when being manufactured and when put to use. At their facilities, they have carried out the entire prefabricated concrete piece project, with the exception of manufacturing the moulds.

7. Adif: Validating new technologies, radar sounding with GPR and drones for railways

Adif, meanwhile, has been responsible for the integration and validation, in a high-speed environment, all systems developed by the other partner companies, establishing the requirements of each development and installing sensors at María Zambrano Station and MARTE application in the Rail Technology Centre, both in Málaga, and facilitated the use of its infrastructure for testing drones for railway applications. Furthermore, they have carried out tests to detect the ballast contamination level using a Ground Penetrating Radar (GPR), which demonstrated this non-destructive sounding technique to be a good solution.

]]>
https://www.revistaitransporte.com/competitive-edge/feed/ 0