TMA – ITRANSPORTE https://www.revistaitransporte.com TRANSPORT ENGINEERING & CONSULTANCY Tue, 27 Aug 2019 16:39:05 +0000 en-GB hourly 1 https://wordpress.org/?v=5.9.4 ENAIRE puts SACTA at the forefront https://www.revistaitransporte.com/enaire-puts-sacta-at-the-forefront/ https://www.revistaitransporte.com/enaire-puts-sacta-at-the-forefront/#respond Thu, 20 Oct 2016 06:46:19 +0000 http://www.revistaitransporte.com/?p=2246

ENAIRE’s automatic air traffic control system (SACTA for its acronym in Spanish), is a complex system of local machines and servers, installed in control centres and towers, that share information in real time. SACTA makes it possible to automate the acquisition, processing, distribution and presentation of the data required to carry out air traffic control tasks that form part of the air traffic management (ATM) system. The main objective of ATM is to regulate traffic in a secure and orderly fashion, as well as to ensure that air navigation system capacity can meet the demand. SACTA began providing service in 1990 at Palma de Mallorca’s control centre; nowadays it is the only traffic control system in all of Spain’s airports.

This system carries out the integration, automation and improvement of processes which allow for the control of aircraft that are en route, approaching and near the tower. In this way, information can be coherently processed and the associated air traffic control and management services have the support they need to meet security and service objectives. It is an ever-evolving system, meaning that ENAIRE is constantly perfecting and modernising it.

Ineco has collaborated with ENAIRE since 1998 on the evolution of SACTA, as well as on the automatic system for flight plan, aeronautical and meteorological information (ICARO), by participating in the specifications, design, testing and commissioning of new functionalities. Ineco’s experts are part of system evolution and development in almost all areas, from the design of both functional and hardware architecture requirements, to maintenance and assistance to different ENAIRE users. A broad range of ATM system knowledge is obtained this way, proving extremely useful to the company and facilitating its national and international expansion.

Broadly speaking, the SACTA system makes it possible:

  • To provide the controller with all relevant, updated air traffic data, thus facilitating interoperability between control facilities, collateral installations in Spain and abroad, and the CFMU.
  • For controllers and technicians to receive training in a dynamic simulation environment.

A modular, redundant design was chosen to deal with such a complex system, thus allowing it to evolve with the least possible disruption to the operation.

Information that is always available to air traffic

The SACTA system, via its subsystems, integrates and provides the following information which is available to air traffic controller at all times:

  • Flight plan information: the system is in charge of processing the flight plans received, determining routes and flight profiles. It also guarantees the interoperability of control facilities and foreign agents, making them fully compatible with flight plans that have origins and/or destinations beyond Spain’s borders.
  • Flight monitoring: the system makes it possible to identify and obtain the position and information regarding aircraft trajectories in controlled airspace, as well as the capacity to ensure the separation and controlled flow of flights. This information is obtained by integrating data from the radar and sensor network for position within national territory, with the data provided by each aircraft in real time.
  • Aeronautical and meteorological information: the system receives and processes meteorological and aeronautical messages (such as SMI, QNH and NOTAM).
  • Supervision: the purpose of the system is to monitor, control and configure the HW/SW subsystems, which make up the SACTA system, thus promoting its reliability and integrity.
  • Recording and operations: these allow for the analysis and study of operational and technical information.

58-reportajes-SACTA-2

SACTA SCREEN. The SACTA system determines routes and flight profiles, identifies the position of aircraft and ensures their separation in airspace.

New functionalities

Greater capacity, precision, savings and efficiency

The main purpose of SACTA, as an ATM system in service, is traffic security in all airspace sectors, thus the reason why it is constantly evolving. The automation of processes which are increasingly complex due to the high concentration of flights in European skies is organised, developed and tested alongside ATC personnel. This makes the information received by air traffic controllers through their HMI (Human Machine Interface) accurate and relevant, thus improving and strengthening communication flows with aircraft and different subsystems. The latest SACTA development included a series of functionalities which noticeably improve efficiency in route control, TMA and TWR. Below are the details concerning the most important changes currently being implemented:

  • Paperless Operations (OSF for its acronym in Spanish).The flight progress strip is a fundamental tool for air traffic controllers. This little slip of paper contains the essential information about the route or itinerary for each controlled flight. With the use of ‘paperless operations’, aerodrome control management is possible with electronic flight strips. These strips appear on the screen in the same order as the old strips which were organised in bays. This system did not simply replace paper, but it had to be adapted to the different roles performed by tower controllers. Management of traffic in the tower is divided into three different areas of responsibility: Clearance (ATC authorisation and start-up), taxi track (taxi clearance) and Local control (clearance for takeoff and landing); these areas of responsibility can be assigned individually, or several can be integrated into a control position. Accordingly, for each case the electronic flight strip presented will follow its functional cycle in line with the areas of responsibility assigned to each control position. Implementation of paperless operations (OSF), presently at Palma de Mallorca and Malaga airports, immediately resulted in increased efficiency and capacity.
  • Air Ground DataLink (AGDL). AGDL implements land-air point-to-point digital communication, allowing for the exchange of information between the aircraft and the Control Centre regarding two different technologies: ATN and FANS. Among other amenities, it provides ADS-C and CPDLC services. Implementation of ADS-C (Automatic Dependent Surveillance–Contract), only in the FANS network, represents significant progress in surveillance. It generates periodic reports or variables on request such as aircraft position and speed, using available aviation information as the source, including GPS data. CPDLC technology (Controller-Pilot Data Link Communication) consists in exchanging a series of pre-defined text messages based on a common phraseology between the air traffic controller and the pilot. This technology makes it possible, among other benefits, to accelerate operating instructions and prevent confusion caused by voice dialogues, thus a complementary tool to this technology.
  • Collaborative Decision Making (CDM). The CDM project is an operational efficiency improvement tool whose approach is the process of aircraft rotation, based on the philosophy of sharing information that affects flights, among the different actors involved (handling, control, airlines and airport). This information is processed, thus increasing its accuracy and completeness. Reduced wait times and increased efficiency are achieved with this tool. The CDM process involves adapting the procedures that the airport operates with.
  • Arrival Manager (AMAN). The Arrival Manager implements calculation of the optimal airport arrival sequence by utilising efficiency criteria to reduce wait times, thus facilitating flight transfer between APP and TWR.
  • eCOS/eVEREST. Although it is almost at the end of the list, it represents the most important change in the evolution of system hardware and software in recent years. It involves a redistribution of the system’s core information nodes, thus affecting the overall architecture of the system. It goes from a configuration where the Seville and Palma servers are integrated, in a centralised manner, in Madrid and Barcelona respectively, together with their affected TWR facilities. The impact on the distribution of flight plan, radar, aeronautical and meteorological information is global, but the costs for implementation, commissioning, maintenance and development are reduced. Although it is a big change to the infrastructure, it is not a big change for normal control operations, meaning that it is transparent.
  • Phase 2 Configuration (CF2 for its acronym in Spanish). CF2 affords easier operations, based on the aircraft tag that the air traffic controller sees on the screen. This tag displays colour changes or blinking on a global level or in certain fields, some of which are new, depending on the status of the flight plan, transfers between sectors, restrictions and alerts.

The main purpose of SACTA, as an ATM system in service, is to provide the tools which make it possible to guarantee the separation of traffic in all airspace sector. / PHOTO_PABLO NEUSTADT

The main purpose of SACTA, as an ATM system in service, is to provide the tools which make it possible to guarantee the separation of traffic in all airspace sector. / PHOTO_PABLO NEUSTADT

]]>
https://www.revistaitransporte.com/enaire-puts-sacta-at-the-forefront/feed/ 0
On the rise https://www.revistaitransporte.com/on-the-rise/ https://www.revistaitransporte.com/on-the-rise/#respond Tue, 02 Feb 2016 18:40:14 +0000 http://www.revistaitransporte.com/en/trayectoria-ascendente/

Four million passengers in 2016: this is the growth forecast for the Rafael Núñez airport in Cartagena de Indias according to SACSA, the concession company. Majority-owned by the Spanish company Aena Internacional, in 2011 SACSA embarked on a project to improve and expand airport facilities, both on ground and in the air, in order to adapt airport capacity to the growing demand. Ineco recently updated the airport’s Master Plan which plans for expansion work until 2020 and has also designed and coordinated construction work (see IT48). Five years ago, work began on passenger terminal building renovations and expansion; work then continued on the design and surveillance of work on the runway, aprons, the perimeter road and the new FBO terminal for general aviation services.

The increase in traffic at the airport is associated with the tourism and industrial activity in this city –located on the coastline of the Caribbean Sea–, whose characteristic, walled historic quarter has been a UNESCO World Heritage Site since 1984. The city stands out as a domestic holiday destination, and although the number of international arrivals has increased, the majority of the city’s air traffic is mainly domestic with connections to the capital, Bogotá, as well as to main cities such as Medellín and Cali. In terms of international flights, top destinations include southern Florida in the United States in addition to Chile, Venezuela and Spain.

In order to drive the tourism sector, the airport operator and local entities such as Corporturismo and the Cartagena City Council are committed to implementing additional long-distance routes both to North America –the city’s main source of outbound tourism– and to Europe –especially to Germany and Spain. Airlines are thus operating larger aircrafts, in turn requiring airports to provide greater capacity as well as increased safety and security –both operational and physical. Since all work must be carried out without interfering with airport operations, Ineco also conducted a study on the different stages of construction in order to minimise the effects as much as possible.

Greater passenger and aircraft capacity

Thus, the construction work that was carried out at Rafael Núñez airport met these requirements: the current terminal building which was expanded from 2011 to 2013 has grown from 10,491 m2 to 19,370 m2. Expansion of the international hall is currently under way. The runway in addition to the main and secondary (or ECO) aprons were repaved between 2013 and 2014 to repair damaged areas and to increase their load bearing capacity. The axis of the turnaround area was modified to make it easier for large aircrafts to move around, and signalling and traffic guidance equipment was also improved.

With regard to the runway, Ineco designed and coordinated the installation of an asphalt mix that had never before been used in Colombia: a discontinuous, BBTM-11 bituminous mixture (with additional fibres) in a 4-cm screed used on 1,740 metres of the runway’s 2,540 total metres. The asphalt not only improves friction conditions on the wearing surface, but it also facilitates drainage and prevents hydroplaning.

On both aprons, a P-401 bituminous hot mixture with a maximum aggregate size of ¾” was used with a BMIII modified asphalt, with varying thicknesses of 5 to 12 centimetres. The landing gear stop-way was also reinforced with 33-cm concrete slabs. Since there are fewer demands with regard to reinforcements on the perimeter road and pedestrian areas, a MDC-2 bituminous hot mixture with B60/70 asphalt was installed.

General aviation on the rise

In addition to the aforementioned interventions which are of vital importance in terms of aircraft safety, the increase in general aviation traffic was kept in mind. Private and military flights represent more than 90% of traffic at this airport, while the remaining percentage is represented by executive flights, school flights, etc. Although general aviation represents less than 1% of the total passengers who use this airport, it corresponds to 30% of airport operations and is expected to grow an average of 3.9% by 2020, totalling some 26,000 passengers and 14,000 operations.

Therefore, construction work was carried out on a new FBO general aviation terminal in 2014 (Fixed Base Operator, a company from the United States in this case), as agreed upon in the draft that had previously been drawn up by Ineco. The new terminal, located in the eastern part, boasts three different areas: airport authority, border control and entry/exit of passengers and baggage; a surveillance area that covers access areas both to and from air and ground, as well as security checkpoints; and a passenger waiting area.

The project included the construction of a new, stand-alone building with an electrical substation, a hydraulic pump room and a drinking water supply in addition to a handling office. Shared with the secondary apron, a new perimeter road was also constructed with direct access from Vía del Mar, the road that connects Cartagena de Indias with Barranquilla.

The growth forecast predicts that Rafael Núñez airport will see four million passengers in 2016

Ongoing work

Rescue and fire fighting services (RFFS) are fundamental elements when it comes to increasing an airport’s capacity. Aeronautics and airline regulations require that the capacity of these services must be rigorously determined by the size (total length and fuselage width) of the aircrafts that normally operate at the airport. Therefore, airports are categorised on a scale of 0 to 10; Rafael Núñez airport falls into category number 7, meaning that this airport would need a minimum of two fire-fighting vehicles, one fire chief and four firefighters.

Nonetheless, the new facilities designed by Ineco provide for the possibility, also foreseen in the regulations, of increasing these resources if, with prior notification, the airport needed to occasionally accommodate aircrafts corresponding to higher categories. For this reason, airport sheds have space for four vehicles: three fire engines and one light-weight commanding vehicle.

Seeing as this airport operates 24 hours a day, the RFFS requires staff to cover three shifts; thus, the new building has the appropriate facilities for said staff to rest in addition to offices, warehouses, technical areas and a car park. In front of this building there will be a paved clear zone that will allow for aircrafts to transition to the military area. Additionally, there will be two water deposits each containing 30,000 litres of water supply for the fire engines, and said fire engines will also be provided with a new access road, thus facilitating their arrival to the runway in under three minutes. Ineco is overseeing the construction work and is also monitoring compliance with the Operational Safety Plan.

Another ongoing project coordinated and monitored by the company includes the enlargement of the runway safety strip; in some areas, this strip does not meet the required distance of 75 metres between the runway axis and the border of the airport. To meet this requirement, ground is being gained from the area of vegetation by reinforcing it with 5-metre long micropiles.

Colombia’s fourth most important airport

Rafael Núñez airport has seen its traffic volume quadrupled since 2004 and is currently the fourth most important in Colombia behind El Dorado airport in Bogotá, Alfonso Bonilla Aragón airport in Cali –Ineco worked on both of these airports (see IT46 and 48)– and José María Córdova airport in Rionegro. In 1996, the Colombian company Sociedad Aeroportuaria de la Costa S.A. (SACSA) took over management of the airport, and the Spanish company Aena Internacional entered into the picture two years later after acquiring 37.89% of the capital. Aena Internacional is also a partner operator. Aena Internacional participates in the management of 15 airports in three different countries: one in the United Kingdom (Luton), 12 in Mexico (Grupo Aeroportuario del Pacífico) and two in Colombia: one in Cali and one in Cartagena de Indias.
]]>
https://www.revistaitransporte.com/on-the-rise/feed/ 0