UTE – ITRANSPORTE https://www.revistaitransporte.com TRANSPORT ENGINEERING & CONSULTANCY Fri, 26 Feb 2016 13:43:06 +0000 en-GB hourly 1 https://wordpress.org/?v=5.9.4 Passengers give the “thumbs up” to the Atlantic Axis https://www.revistaitransporte.com/passengers-give-the-thumbs-up-to-the-atlantic-axis/ https://www.revistaitransporte.com/passengers-give-the-thumbs-up-to-the-atlantic-axis/#respond Tue, 02 Feb 2016 18:52:01 +0000 http://www.revistaitransporte.com/en/los-viajeros-dan-el-si-al-eje-atlantico/

With more than three million travellers in 2015, according to data from the Ministry of Public Works, passengers have given the ‘thumbs up’ to the Atlantic Axis, a railway infrastructure designed for speeds of up to 250 km/h. The renovation, electrification and duplication of existing routes in addition to the construction of new bypasses and several viaducts, bridges and tunnels have made it possible to transition from the old, non-electrified single tracks to high-performance rail infrastructure: greater speeds, capacity, safety, frequency and comfort for passengers who save up to 58% in travel time. In addition to making renovations to the rolling stock, Renfe has also maintained fares and reorganised rail services which are now divided into “express” and “local” services to cover direct routes between large cities as well as between the urban centres near these cities.

Ineco collaborated in the execution of these projects which have revitalised railway transport in Galicia. According to data from the Railway Observatory of the Ministry of Public Works, the A Coruña-Santiago route is one of the top five regional rail lines for traffic in all of Spain. The Businessmen’s Association of Galicia (Círculo de Empresarios de Galicia) considers that the growth in traffic along this route –a growth of more than 90% between 2008 and 2013– is “a fact that must be directly attributed to the improvement in infrastructure and the implementation of a high-performance rail line on this route of the Atlantic Axis”.

Ineco has worked in construction & environmental management & monitoring, project drafting, inspections & structural testing

In April 2015 the Santiago de Compostela-Vigo section was inaugurated –the third of the three sections that make up the majority of this route which represents a milestone in the modernisation of the Galician railway. The territory of this region is characterised by a great dispersion of populated areas: few big cities –concentrated in costal areas–, many small, isolated areas –especially inland– and very rugged terrain. In addition to these characteristics we can also mention the natural geographical barriers that separate Galicia from the Meseta –barriers that have historically stood in the way of constructing land transport infrastructures, both road and rail.

A far-reaching project

The Axis, spanning 155 kilometres, runs along Galicia’s Atlantic Coast and connects the main areas of industrial and economic activity as well as universities, areas which fuel the demand for transport. The pre-study phase is already underway for the connections A Coruña-Ferrol (63.2 km) to the north of the Axis, in addition to Vigo-Border of Portugal (22.1 km) in the far south of Galicia. The route also connects Santiago with Ourense in the east where this section links up with the high-speed access route to Madrid which is currently under construction.

Initial work on the transformation of existing infrastructure into a modern, high-performance, rapid railway corridor began in 2002. Work was carried out in phases and consisted in installing, along the entire route, a double track with multi-purpose sleepers that will later allow for the change from the Iberian gauge to the standard gauge. The line has also been electrified to 25 kV at 50 Hz, and bypasses have been constructed which have shortened the route by almost 22 kilometres. New sections of the line, owing to the land’s rugged terrain, required several structures: 37 tunnels –totalling a distance of more than 60 kilometres– and 32 viaducts that span a total of 14.9 kilometres. The majority of these structures are located along the section between Santiago and Vigo. This was the most complex part of the route to construct and was the last to begin operating, following both A Coruña-Santiago in 2009 and the Santiago-Ourense connection in December 2011.

In addition to the work concerning electrification, platforms and route corrections (bypasses), adapting the line to new, high speeds also required the remodelling of stations at A Coruña, Santiago de Compostela, Pontevedra, Uxes, Villagarcía de Arousa and Arcade-Apeadero, as well as the construction of new stations: Cerceda-Meirama, Ordes, Padrón-Barbanza, Redondela High Speed and Vigo-Urzáiz, as well as the “temporary” Vigo-Guixar station.

Ineco on the Atlantic Axis

Throughout these years, Ineco has offered their services to the Ministry of Public Works, Renfe and Adif in these highly technical and complex activities, just as they did for the rest of the rail network. Ineco was thus responsible for carrying out tasks regarding the management, coordination and surveillance of construction work, the environmental management of different sections along the whole of the Axis, and the drafting of architectural plans (stations) and railway installations (signalling, safety, telecommunications, etc.).The company also conducted a number of studies in addition to inspections and structural load tests, some as exceptional as that of the Ulla viaduct (see IT54)

Ineco furthermore provided assistance in the management and coordination of tunnel construction work, such as the Vigo access tunnel measuring 8,266 metres long which was carried out using tunnelling machinery, and in the installation of safety systems: electrical installations, ventilation, fire protection systems, etc..

Also worth mentioning in relation to architectural work is the drafting of the construction project for the Vigo-Guixar station which, starting in 2011, has operated as the sole station following demolition of the old building while the new terminal was constructed (in the same location). The Guixar station is a two-storey passenger building boasting 1,000 square metres of space, three platforms measuring 285, 165 and 100 metres long for long-distance and regional rail trains, parking, and bus and taxi stops. When the new Vigo-Urzáiz station began operating in 2015, the Ministry of Public Works decided to keep the Guixar station open to freight transport as well as to local trains.

Ineco also carried out a project, completed in 2010, to standardise architectural elements such as marquees, enclosure gates, decorative elements and locks at nine stations: Redondela, Pontevedra, Padrón, Ordes, Cerceda, Uxes, Pontevedra-Universidad, Arcade and Vilagarcía de Arousa. New passenger buildings were also designed for the latter two stations.

The 155-km line has reduced the average travel time between A Coruña and Vigo by 58% and is one of the most widely travelled routes Spain

With regard to new sections of the line, Ineco coordinated the construction of the Ordes bypass in the province of A Coruña, a section that, over a span of just 7.2 kilometres, required two tunnels and a handful of viaducts. The Vilagarcía-Padrón bypass located between Santiago and Vigo stands out for its complexity, reaching a length of 26.1 kilometres. The company provided technical assistance throughout the management of construction work as well as during the environmental management, control and surveillance of several subsections. The bypass was one of the corridor’s most complex sections with seven tunnels and a dozen viaducts, including one which crosses the Ulla river (spanning a distance of 16 kilometres) and another that crosses over the Sar river –the longest on the Axis- measuring 2.4 kilometres.

Ineco also played a role during each of the phases of development of another high-performance railway connection: the line which links the Atlantic Axis to Ourense from Santiago (see IT18 and 44). The company was highly involved in all of the stages of development of this 150-kilometre section of the line, from project drafting to drawing up operations and maintenance plans, as well as during the construction phases including construction and environmental management services, technical assistance, surveillance and coordination services, etc. Since it entered into service in December 2011, the Santiago-Ourense corridor has also contributed to improving railway connections with the Meseta by reducing existing conventional service travel time by 50 minutes.

Services offered

  • Express services:

TRAINS: S-121 of the Avant series (regional rail lines).

STOPS: A Coruña–Santiago de Compostela–Vilagarcía de Arousa–Pontevedra and Vigo, and stops at the new stations of Padrón-Barbanza, Redondela AV and Arcade.

SEATING CAPACITY: 50% increase from 185 to 282 passengers per train.

  • Local services:

TRAINS: diesel engine railcars of the 599 and 596 series (regional rail lines).

STOPS: the different trains stop at the following stations: Uxes, Cerceda-Meirama, Ordes, Osebe, Padrón, Pontecesures, Catoira, Portela, Pontevedra-Universidade Vilagarcía de Arousa, Arcade, Cesantes, Redondela-Picota and Redondela Pontevedra, Santiago de Compostela and Vigo-Guixar.

SEATING CAPACITY: 40% increase

Source:Ministry of Public Works and Renfe

Atlantic Axis fact sheet

  • Total operating distance: 155.6 kilometres (A Coruña-Vigo), 21.8 fewer kilometres than before construction work.
  • Track: Iberian-gauge double track with multi-purpose sleepers, adjustable to the standard gauge.
  • Electrification: 25 kV at 50Hz alternating current.
  • Signalling system: originally the digital ASFA system (Automatic Braking and Announcement of Signals) was used. In July 2015 Adif commissioned a temporary business association (UTE in Spanish) to carry out the installation and maintenance of the European Rail Traffic Management System (ERTMS) for the next 20 years.
  • Maximum train speed: 250 km/h.
  • Reduction in travel times: 58% average decrease: A Coruña-Vigo, between 80 and 95 minutes depending on the train, compared to 120 minutes before construction work was carried out; Santiago-Vigo, 55 minutes (95 minutes pre-construction), and Vigo–Pontevedra (15 minutes, compared to 36 before).
 Source: Ministry of Public Works, Adif and Renfe

]]>
https://www.revistaitransporte.com/passengers-give-the-thumbs-up-to-the-atlantic-axis/feed/ 0
Riveting structures https://www.revistaitransporte.com/riveting-structures/ https://www.revistaitransporte.com/riveting-structures/#respond Tue, 02 Feb 2016 11:46:09 +0000 http://www.revistaitransporte.com/en/a-golpe-de-remache/

The renovation work is part of the comprehensive restoration project drawn up by Ineco in 2008 which sought to remedy shortcomings while remaining consistent with the historic character of the architecture. These large, riveted iron structures were built as a result of the Industrial Revolution during the 19th century and are epitomised by the Eiffel tower. Spain lagged a bit behind other cities with regard to the use of iron in architecture and engineering as can be seen in countless examples from Paris, London, Amsterdam, Belgium and Germany in addition to Boston and New York in the United States.

With all of this, transport infrastructure in 19th-century Spain such as stations, bridges and viaducts requiring versatility, luminosity, spaciousness and low prices were easily adapted to the engineering of iron which was best received by engineers of that time period as well as by architects. Examples of riveted iron infrastructures in Spain include the Atocha and Delicias railway stations, the Catalonia Railway Museum, the Valencia railway station and the Aranjuez railway station –the main feature of this article. Furthermore, some quite representative buildings include Sabatini’s Royal Firearms Factory in Toledo and the Geological and Mining Institute of Spain, in addition to bridges and viaducts such as the prominent Triana Bridge.

Spanish transport infrastructure in 19th-century such as stations, bridges and viaducts requiring versatility, luminosity, spaciousness and low prices were easily adapted to the engineering of iron

Aranjuez station is one of the most characteristic vestiges of the industrial age of the 19th century. The earliest railway facilities at Aranjuez were built in 1851 for the line connecting Madrid with Alicante, popularly known back then as the ‘Tren de la Fresa’ (The Strawberry Train) and whose name is now in use once again for tourist services. This station also provides service to the C3 Madrid-Aranjuez commuter rail line. It is the second oldest railway line in Spain (the oldest is the Barcelona-Mataró line, 1943) and is one of the monuments of the Royal Sites of Aranjuez, a Unesco World Heritage Landscape Site since 2001. This line originally reached all the way to the Royal Palace. The original station faced towards the palace on grounds of the company’s prestige and the fact that they needed support from the monarchy. Nevertheless, this location caused so many problems affecting train traffic that it became necessary to build a new station with a completely different layout. The platform marquees are living proof of the iron beams and framework –signs of progress from that time period– that were used to construct public buildings such as stations, markets, factories, libraries and bridges.

The technique of riveting

The steel marquees, roofed by fibre cement and fluted glass, were built around 1851 to provide shelter over the station’s three platforms which were later renovated around 1980 in order to adapt them to the trains and general regulations at that time. As can be observed in the images, the marquees suffered from corrosion problems that affected their structural framework, foundation and ornamentation due to an unsatisfactory roof water drainage system, thus causing damage to the suspended wooden ceiling and corroding the metal. Rehabilitation and restoration of these marquees was a year-long, painstaking process that rediscovered the traditional technique of riveting.

Riveting is the process of joining together several metallic pieces (metal sheets and/or profiles) using rivets. Rivets are elements that are similar to screws –but without the thread– consisting of a cylindrical shaft called a shank or the body, and a head normally shaped like a spherical cap, such as the rivets utilised for the marquees at Aranjuez station. These rivets are manufactured from ductile, malleable and durable metals such as copper, aluminium, some alloys and mild steel, such is the case with the rivets presented herein.

Riveting is the process of joining together several metallic pieces using rivets –elements similar to screws but without the thread- consisting of a cylindrical shaft and a head

To join together metal pieces made from steel, rivets are used –also made from steel– whose quality and characteristics can vary. Holes are drilled just once, piercing through two or more pieces, after having assembled, clamped and tightly screwed said pieces together. Once the holes have been drilled, the pieces are separated from each other in order to eliminate metal scrap, remnants and sharp edges from the surface. The diameter of the holes, save for exceptional cases, is made 1 millimetre larger than the diameter of the body of the rivet. Selecting the length of the body of the rivet is very important: after the rivet is placed in a furnace and uniformly heated to a temperature between 950 and 1,050 ºC in order to allow for its moulding, the riveting process is carried out by introducing the heated rivet into the hole on the pieces which are to be joined together. The body of the rivet should be cast and forged in order to form the shop head of the rivet. This piece must completely fill the hole. To form the shop head, either a riveting machine applying uniform compression is utilised, or a pneumatic hammer with a riveting pin or a bucking bar is used, always held steadily in place. These tools –not the direct strike of a hammer– are used to form the rivet’s second head. Both the furnace and the riveting machine need to be located close to the area where the riveting is to take place so as to avoid significant cooling of the rivet before it is set into place. The pieces that are joined together must lie perfectly flush and tight against each other to ensure a union without bending or warping. Afterwards, the rivet is introduced into the pieces that are being joined together, and the body of the rivet is forged. This process is carried out using a pneumatic hammer and a bucking bar on the spherical head of the rivet.

]]>
https://www.revistaitransporte.com/riveting-structures/feed/ 0